If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x+7x^2=0
a = 7; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·7·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*7}=\frac{-70}{14} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*7}=\frac{0}{14} =0 $
| -228=n-8(7n+1) | | -208=7(-3x-8)-5 | | (D^3)(D-2)((D-3)^2))y=0 | | 2n+-7=3n+-3 | | -7/10-x+7.7+3(2/3x+4)=2 | | 5x²-40x=0 | | -9(8-m)-13=4 | | 0.25(3x+1)=1/6(5-2x) | | 25=x^2-4x | | 12e+18=15e+12 | | 11x+x=312 | | 2x^2+60x+70=0 | | 18a-3=5 | | (x-2)^2/3=81 | | F(x)=9x^2-18x | | 1/4x-1/4=1/3x+1/2= | | 7a+50=180 | | 48=(3x+2)(3x+6) | | 3u–-4=13 | | 4(x+7)=9(x-1)22 | | 5-(9/x)=0 | | -9(3+2)-9=x | | (2t^2+2t-3)/(3t^2+5t-13)=1 | | 4t+1+5t-8t=3+1 | | 5x-48=55 | | 9t^2-28t+3=0 | | 3/4+4m/6=41/12 | | 15x^2/25x^2+20x=0 | | 3/4+3/4+4m/6=41/12 | | 32x^2+64x-40=0 | | 6x-81=3x | | -4(2n-5)=-26 |